Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biol Methods Protoc ; 8(1): bpad007, 2023.
Article in English | MEDLINE | ID: covidwho-2314048

ABSTRACT

The coronavirus SARS-CoV-2 is the most sequenced pathogen ever, with several million genome copies deposited in the GISAID database. This large amount of genomic information poses non-trivial bioinformatic challenges for those interested in studying the evolution of SARS-CoV-2. One common problem when studying the phylogeny of the coronavirus in its geographical context is to count with accurate information of the location of the samples. However, this information is filled by hand by research groups all over the world and sometimes typos and inconsistencies are introduced in the metadata when submitting the sequences to GISAID. Correcting these errors is laborious and time-consuming. Here, we provide a suite of Perl scripts designated to facilitate the curation of this vital information and perform a random sampling of genome sequences if necessary. The scripts provided here can be used to curate geographic information in the metadata and sample the sequences from any country of interest to ease the preparation of files for Nextstrain and Microreact, thus accelerating evolutionary studies of this important pathogen. CurSa scripts are accessible via: https://github.com/luisdelaye/CurSa/.

2.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-2115551

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/genetics
3.
Cell Host Microbe ; 30(8): 1112-1123.e3, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1894865

ABSTRACT

Although recombination is a feature of coronavirus evolution, previously detected recombinant lineages of SARS-CoV-2 have shown limited circulation thus far. Here, we present a detailed phylogenetic analysis of four SARS-CoV-2 lineages to investigate the possibility of virus recombination among them. Our analyses reveal well-supported phylogenetic differences between the Orf1ab region encoding viral non-structural proteins and the rest of the genome, including Spike (S) protein and remaining reading frames. By accounting for several deletions in NSP6, Orf3a, and S, we conclude that the B.1.628 major cluster, now designated as lineage XB, originated from a recombination event between viruses of B.1.631 and B.1.634 lineages. This scenario is supported by the spatiotemporal distribution of these lineages across the USA and Mexico during 2021, suggesting that the recombination event originated in this geographical region. This event raises important questions regarding the role and potential effects of recombination on SARS-CoV-2 evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
4.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1742492

ABSTRACT

SARS-CoV-2 variants surveillance is a worldwide task that has been approached with techniques such as Next Generation Sequencing (NGS); however, this technology is not widely available in developing countries because of the lack of equipment and limited funding in science. An option is to deploy a RT-qPCR screening test which aids in the analysis of a higher number of samples, in a shorter time and at a lower cost. In this study, variants present in samples positive for SARS-CoV-2 were identified with a RT-qPCR mutation screening kit and were later confirmed by NGS. A sample with an abnormal result was found with the screening test, suggesting the simultaneous presence of two viral populations with different mutations. The DRAGEN Lineage analysis identified the Delta variant, but there was no information about the other three mutations previously detected. When the sequenced data was deeply analyzed, there were reads with differential mutation patterns, that could be identified and classified in terms of relative abundance, whereas only the dominant population was reported by DRAGEN software. Since most of the software developed to analyze SARS-CoV-2 sequences was aimed at obtaining the consensus sequence quickly, the information about viral populations within a sample is scarce. Here, we present a faster and deeper SARS-CoV-2 surveillance method, from RT-qPCR screening to NGS analysis.


Subject(s)
COVID-19/diagnosis , DNA Mutational Analysis/methods , Genome, Viral/genetics , Mutation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
5.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1541625

ABSTRACT

Understanding the evolution of the SARS-CoV-2 virus in various regions of the world during the Covid-19 pandemic is essential to help mitigate the effects of this devastating disease. We describe the phylogenomic and population genetic patterns of the virus in Mexico during the pre-vaccination stage, including asymptomatic carriers. A real-time quantitative PCR screening and phylogenomic reconstructions directed at sequence/structure analysis of the spike glycoprotein revealed mutation of concern E484K in genomes from central Mexico, in addition to the nationwide prevalence of the imported variant 20C/S:452R (B.1.427/9). Overall, the detected variants in Mexico show spike protein mutations in the N-terminal domain (i.e. R190M), in the receptor-binding motif (i.e. T478K, E484K), within the S1-S2 subdomains (i.e. P681R/H, T732A), and at the basis of the protein, V1176F, raising concerns about the lack of phenotypic and clinical data available for the variants of interest we postulate: 20B/478K.V1 (B.1.1.222 or B.1.1.519) and 20B/P.4 (B.1.1.28.4). Moreover, the population patterns of single nucleotide variants from symptomatic and asymptomatic carriers obtained with a self-sampling scheme confirmed the presence of several fixed variants, and differences in allelic frequencies among localities. We identified the mutation N:S194L of the nucleocapsid protein associated with symptomatic patients. Phylogenetically, this mutation is frequent in Mexican sub-clades. Our results highlight the dual and complementary role of spike and nucleocapsid proteins in adaptive evolution of SARS-CoV-2 to their hosts and provide a baseline for specific follow-up of mutations of concern during the vaccination stage.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Carrier State/prevention & control , Carrier State/virology , Genome, Viral , Humans , Mexico , Mutation , Phosphoproteins/genetics , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL